(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0) → 0
f(s(0)) → s(0)
f(s(s(x))) → p(h(g(x)))
g(0) → pair(s(0), s(0))
g(s(x)) → h(g(x))
h(x) → pair(+(p(x), q(x)), p(x))
p(pair(x, y)) → x
q(pair(x, y)) → y
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
f(s(s(x))) → +(p(g(x)), q(g(x)))
g(s(x)) → pair(+(p(g(x)), q(g(x))), p(g(x)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
g(s(s(x5076_1))) →+ h(pair(+(p(g(x5076_1)), q(g(x5076_1))), p(g(x5076_1))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,0,0].
The pumping substitution is [x5076_1 / s(s(x5076_1))].
The result substitution is [ ].
The rewrite sequence
g(s(s(x5076_1))) →+ h(pair(+(p(g(x5076_1)), q(g(x5076_1))), p(g(x5076_1))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,1,0].
The pumping substitution is [x5076_1 / s(s(x5076_1))].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0') → 0'
f(s(0')) → s(0')
f(s(s(x))) → p(h(g(x)))
g(0') → pair(s(0'), s(0'))
g(s(x)) → h(g(x))
h(x) → pair(+'(p(x), q(x)), p(x))
p(pair(x, y)) → x
q(pair(x, y)) → y
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
f(s(s(x))) → +'(p(g(x)), q(g(x)))
g(s(x)) → pair(+'(p(g(x)), q(g(x))), p(g(x)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(0') → 0'
f(s(0')) → s(0')
f(s(s(x))) → p(h(g(x)))
g(0') → pair(s(0'), s(0'))
g(s(x)) → h(g(x))
h(x) → pair(+'(p(x), q(x)), p(x))
p(pair(x, y)) → x
q(pair(x, y)) → y
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
f(s(s(x))) → +'(p(g(x)), q(g(x)))
g(s(x)) → pair(+'(p(g(x)), q(g(x))), p(g(x)))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: pair → 0':s
h :: pair → pair
g :: 0':s → pair
pair :: 0':s → 0':s → pair
+' :: 0':s → 0':s → 0':s
q :: pair → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
g,
+'They will be analysed ascendingly in the following order:
+' < g
(8) Obligation:
TRS:
Rules:
f(
0') →
0'f(
s(
0')) →
s(
0')
f(
s(
s(
x))) →
p(
h(
g(
x)))
g(
0') →
pair(
s(
0'),
s(
0'))
g(
s(
x)) →
h(
g(
x))
h(
x) →
pair(
+'(
p(
x),
q(
x)),
p(
x))
p(
pair(
x,
y)) →
xq(
pair(
x,
y)) →
y+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
f(
s(
s(
x))) →
+'(
p(
g(
x)),
q(
g(
x)))
g(
s(
x)) →
pair(
+'(
p(
g(
x)),
q(
g(
x))),
p(
g(
x)))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: pair → 0':s
h :: pair → pair
g :: 0':s → pair
pair :: 0':s → 0':s → pair
+' :: 0':s → 0':s → 0':s
q :: pair → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
+', g
They will be analysed ascendingly in the following order:
+' < g
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s3_0(
a),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
+(
n5_0,
a)), rt ∈ Ω(1 + n5
0)
Induction Base:
+'(gen_0':s3_0(a), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(a)
Induction Step:
+'(gen_0':s3_0(a), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
s(+'(gen_0':s3_0(a), gen_0':s3_0(n5_0))) →IH
s(gen_0':s3_0(+(a, c6_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
0') →
0'f(
s(
0')) →
s(
0')
f(
s(
s(
x))) →
p(
h(
g(
x)))
g(
0') →
pair(
s(
0'),
s(
0'))
g(
s(
x)) →
h(
g(
x))
h(
x) →
pair(
+'(
p(
x),
q(
x)),
p(
x))
p(
pair(
x,
y)) →
xq(
pair(
x,
y)) →
y+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
f(
s(
s(
x))) →
+'(
p(
g(
x)),
q(
g(
x)))
g(
s(
x)) →
pair(
+'(
p(
g(
x)),
q(
g(
x))),
p(
g(
x)))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: pair → 0':s
h :: pair → pair
g :: 0':s → pair
pair :: 0':s → 0':s → pair
+' :: 0':s → 0':s → 0':s
q :: pair → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
g
(12) RewriteLemmaProof (EQUIVALENT transformation)
Proved the following rewrite lemma:
g(
gen_0':s3_0(
+(
1,
n548_0))) →
*4_0, rt ∈ Ω(3
n)
Induction Base:
g(gen_0':s3_0(+(1, 0)))
Induction Step:
g(gen_0':s3_0(+(1, +(n548_0, 1)))) →RΩ(1)
pair(+'(p(g(gen_0':s3_0(+(1, n548_0)))), q(g(gen_0':s3_0(+(1, n548_0))))), p(g(gen_0':s3_0(+(1, n548_0))))) →IH
pair(+'(p(*4_0), q(g(gen_0':s3_0(+(1, n548_0))))), p(g(gen_0':s3_0(+(1, n548_0))))) →IH
pair(+'(p(*4_0), q(*4_0)), p(g(gen_0':s3_0(+(1, n548_0))))) →IH
pair(+'(p(*4_0), q(*4_0)), p(*4_0))
We have rt ∈ Ω(3n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(3n)
(13) BOUNDS(3^n, INF)
(14) Obligation:
TRS:
Rules:
f(
0') →
0'f(
s(
0')) →
s(
0')
f(
s(
s(
x))) →
p(
h(
g(
x)))
g(
0') →
pair(
s(
0'),
s(
0'))
g(
s(
x)) →
h(
g(
x))
h(
x) →
pair(
+'(
p(
x),
q(
x)),
p(
x))
p(
pair(
x,
y)) →
xq(
pair(
x,
y)) →
y+'(
x,
0') →
x+'(
x,
s(
y)) →
s(
+'(
x,
y))
f(
s(
s(
x))) →
+'(
p(
g(
x)),
q(
g(
x)))
g(
s(
x)) →
pair(
+'(
p(
g(
x)),
q(
g(
x))),
p(
g(
x)))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: pair → 0':s
h :: pair → pair
g :: 0':s → pair
pair :: 0':s → 0':s → pair
+' :: 0':s → 0':s → 0':s
q :: pair → 0':s
hole_0':s1_0 :: 0':s
hole_pair2_0 :: pair
gen_0':s3_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s3_0(a), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(n5_0, a)), rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)